• Chronic Back Pain: Can Stem Cells Help?

    Back pain left me with a lot of questions as a kid. How was it possible to “throw out your back”? I thought backs attached pretty firmly to stuff in that general area. And why did this throwing out your back situation lead my parent(s) to crawl around on hands and knees for days at a time?

    As a persnickety 3rd or 4th grader, it seemed like a great way to force me to do all the cooking. Mom just pretended she couldn’t do stuff so that I would pick up the slack. A convenient method of tricking me into child labor so she could take a day or two off. I had her all figured out.

    The Back Pain Struggle Is Real

    In hindsight, I’m pretty sure my mom wasn’t super jazzed about eating nothing but overly sugared cinnamon toast and pancakes. But I couldn’t possibly have understood the crippling nature of back pain at that age. After all, I was an indestructible kid who regularly jumped out of tree forts and somehow never broke an arm. So how could sneezing bring someone to their knees?

    As a former technical trainer for a spine implant company, I now know all too well the realities of back injury and chronic pain. It affects the people I love and probably almost every person reading this – at one point or another. And honestly, we, the scientific and medical community, haven’t done a great job treating it for… oh, let’s say most of history.

    But treatments have improved recently, and you should definitely know about those improvements.

    So, let’s do a quick tour of your spine, how cool it is, what happens when it breaks, classic treatments, and cutting edge options like stem cells and nerve confounding implants.

    I know that last part sounded bad, but I assure you it’s not. It’s actually really fascinating and hope inducing. Kind of like every person who’s ever been on ancient aliens, except with a lot more hope.

    The Spine Is Important

    That’s not the understatement of the century, but it’s definitely in the top 10%. Also up there are “Kanye likes Kanye,” and “the Insane Clown Posse missed a couple of days of science class.”

    Your spine is made of 33 bones interspersed with cartilage discs. and that simple structure carries a lot of responsibility. Pun intended. #DadJokes #NotJustForDads

    Your spine has three main jobs, according to my summary of the thousand things it does:

    1. Provide structural support.
    2. Absorb shock while allowing movement.
    3. Protect nerves.

    That last one gets most of us at some point in our lives. Because we jump off of cliffs and fracture spinal bones (not referencing any person in particular that I definitely know), or throw ourselves from moving cars. And then can you take clopidogrel and crestor https://businesswomanguide.org/capstone/argumentative-essay-on-why-marijuana-should-be-legalized/22/ =buy viagra online without prescriptiotn cheap analysis essay editor services gb http://windmillharbourmarina.org/what-is-generic-for-diovan/ free essay on genetic engineering cuando no puedo tomar viagra see follow url m force es viagra phytodolor dosierung viagra nursing nts paper https://academicminute.org/paraphrasing/technology-and-obesity-essays/3/ james andrews viagra https://brethrenwoods.org/essays-on-becoming-a-special-education-teacher/ https://norfolkspca.com/medservice/cialis-zamow/14/ cardizem and cialis examples degree level essays doing case study research a practical guide civil rights essay topics go to link https://eagfwc.org/men/is-there-a-true-generic-viagra/100/ levitra bixby uses and side effects of sildenafil cell phones should not be allowed in school essay does doxycycline help acne viagra pfizer authentic ideas to write a book tamoxifen and triglycerides https://eagfwc.org/men/come-funziona-il-viagra-yahoo/100/ where to buy viagra in pittsfield ma our shock absorbing spine parts squish out onto our nerves, compressing them. Which causes pain, tingling, numbness, lightning strikes down your leg, and a whole bunch of other unpleasant symptoms.

    Spinal Injury = Pain or worse

    If we make incredibly stupid choices – like jumping off of river-spanning bridges, or if we get into a horrific car accident, the bones in our spine can become unstable. Sometimes they even get knocked out of place. Which causes some really aggressive consequences – chronic pain, loss of sensation, paralysis, loss of muscle control, and others.

    Basically, if your spine malfunctions or gets damaged, your whole body can suffer the consequences. And they are unpleasant in the extreme, ranging from mild discomfort to complete and total paralysis.

    A Lot of Back Pain Fixes Itself

    According to one study, 90% of patients with first time low back pain symptoms will get and stay better with physical therapy and time. But the more times your pain returns, the lower the probability of it improving without surgical intervention. Now, that’s *mostly encouraging*, because the data says most people get better without ever needing surgery. But if you fall into that unlucky minority, you could be stuck with chronic back pain. Unless you know your way around the treatment options. Luckily for you, I already know that stuff!

    Let’s start with the most aggressive treatment option and work our way down to the less invasive, more biologically friendly options.

    Spinal Fusion Is For Serious Back Problems

    Spinal fusion surgery typically helps patients with very serious mechanical problems in their spine. Like the instability and misalignment I mentioned earlier (and also scoliosis). So avoid jumping off of railroad bridges, tangling with the Hulk, and aggressive car accidents if you don’t want to personally learn all about this type of surgery.

    In this procedure, a surgeon removes tissue that squishes nerves, brings bones back into alignment, and places implants that give nerves enough space to breathe while also holding everything in place. At the same time, the surgeon adds graft material in the operated area so that bone will grow there and take the mechanical load off of the metal implants over time. Because, and this may shock you, metal implants don’t hold up near as well as your own bone. That’s right – titanium is no match for the incredible self-maintaining power of human bone!

    Spinal Fusion Doesn’t Always Work

    Now, at the end of this procedure, you’ll have a pretty significant recovery period ahead. And depending on which study you read, success rates range from 60% – 90%, leaving a pretty significant fraction of patients with unresolved symptoms. So after all that trouble, having your spine opened up, implants thrown in there, maybe having your personal religious leader pray over it, throwing a penny or two into a fountain, and that lengthy recovery, you could still have the same symptoms your surgery should have treated.

    Please excuse my language, but that’s pretty crappy, y’all. And it’s one of the many reasons people often just don’t want to get this kind of surgery, even if their doctor/insurance provider recommends it.

    Some mechanical problems can’t be fixed without this kind of surgery, but most people with back pain don’t have that level of mechanical issue. Meaning they likely have other options, like this next one.

    Microdiscectomy Restores Your Nerve(s)’ Personal Space

    Remember when I said earlier that the shock absorbing parts of your spine can squish into your nerve space and cause pain? When that happens, the tissue doesn’t just disappear. Especially if it registers as a large chunk of tissue. Instead, it hangs out, crowds your nerves, and generally makes a nuisance of itself. Like if your mom moved into your dorm room with you. No matter how awesome your mom is, she will cramp your college style if she shares your dorm room. And probably not in the hilarious Melissa McCarthy way either.

    Don’t worry though. Unlike the mom in your dorm room situation, a physician can easily just remove the squishy disc material that crowds your nerves. For many patients this means a return to their formerly carefree, more importantly, pain-free lives. And best of all, physicians can do this procedure through a big straw, meaning very short hospital stays, much kinder recoveries, and waaaay less risk.

    For most patients, this type of procedure leads to satisfactory pain and disability improvements, and they don’t need additional surgeries. A small portion of patients may experience recurrent symptoms at the operated level, requiring a repeat microdiscectomy or possibly a spinal fusion. But for the most part, microdiscectomy represents one of the most dependable spinal interventions we have. For appropriate patients, it works like a charm.

    Microdiscectomy In A Nutshell

    In this procedure, a surgeon simply uses surgical instruments to remove the tissue your disc has accidentally allowed to crowd your nerves. That’s the whole thing. Most patients do very well with it, but a few do end up needing further intervention.

    Bonus

    Microdiscectomy doesn’t cause irreversible changes in the same way that a spinal fusion does. With a spinal fusion, a bunch of tissue comes out, and you will never get that cartilage-squishy-shock-absorby tissue back in that spot. Which means that (after spinal fusion) microdiscectomy and the concentrated bone marrow procedure further down this post either won’t help or flat out no longer apply to the situation.

    Microdiscectomy, on the other hand, provides an option that keeps all your other treatment options open.

    Another Option: Concentrated Bone Marrow

    with mesenchymal stem cells. I mentioned this treatment in one of my first posts, because it stands as one of the few legitimate “stem cell” treatments currently available in the United States. It carries a big qualifier with it though. Injection of concentrated bone marrow only helps appropriate patients. That means patients who don’t have mechanical problems requiring spinal fusion or giant chunks of tissue suffocating their nerves. Bone marrow derived cells, stem cells or otherwise, can’t handle that kind of problem.

    What can they handle?

    Well, in this study, 26 patients whose insurance companies approved them for spinal fusion surgery had either one or two injections of their own concentrated bone marrow. That’s right – just an injection. No surgery. These patients had confirmed diagnoses of discogenic back pain, without any of the nerve compression we discussed earlier with spinal fusion. They experienced pain and disability improvements on the order of 70% at one, two, and three years post-procedure. And a couple of patients showed quantifiable improvements in the health of their discs (the squishy shock absorby part of your spine).

    Now, after three years, 6 of the patients had actually chosen to move on to spinal fusion. That probably means their pain and disability scores started climbing sometime after their initial treatment. But. That means 20 people who could have had a very invasive, irreversible surgery, didn’t. That means almost 77% of patients in the study avoided spinal fusion surgery.

    Another bonus

    Disc injection with concentrated bone marrow, just like microdiscectomy, allows you to keep your options open. If it doesn’t work out for you, you can still get literally any other treatment for your back pain.

    Note: your local doctor probably doesn’t offer this treatment. But I mentioned several who do in this post.

    Another Option: Spinal Cord Implants

    I promise it sounds a lot worse than it is, like goulash or mole. Just give me a hot minute to explain.

    Sometimes back pain does. not. respond to treatment, even after spinal fusion surgery. And that sucks. Because chronic pain can lead to depression, declining quality of life, and not having enough energy to heckle your siblings in public anymore. None of which are good things.

    Doctors, researchers, and engineers figured out a fairly elegant way to deal with this though. Instead of targeting the source of the pain, they decided to interfere with the road it takes from the source to your brain. If the pain signal can’t reach your brain, or comes through as something else (like very light tingling), then the pain disappears.

    How do they do this?

    Tiny Spaghetti Implants Block Pain Signals

    Your spinal cord basically transports information between every part of your body and your brain through electrical impulses. These spinal implants create electrical fields that change the message as it heads toward your brain. So what started as “CRIPPLING ANGRY BACK PAIN” can end up in your brain as “nothing to see here.” Since you only know the final message in your brain, these implants can literally make chronic pain disappear.

    Another cool thing about this approach: ALL pain signals get to your brain this way. So it applies to a wide variety of chronic pain conditions.

    In one study, 69% of patients receiving spinal cord stimulating implants for back pain after spinal fusion surgery reported “substantially improved or better global perceived effect,” (a measure of pain relief) at six year follow-up. And that study used old school technology. The implants available today blow that old stuff out of the water.

    You Can Try Them On – Just Like Amazon’s Clothes!

    But minus the free shipping and burgeoning shopping addiction.

    Honestly, the fact that you can try on these implants to see if they work – before actually getting a long-term implant – is revolutionary and epic. You basically visit a pain management physician, have them place the spaghetti implant in the most effective spot for your pain, then go home with a smart-phone app that lets you control the level of therapy your trial implant provides. Within a week you know whether or not it works well for you, and then you can make the decision to go ahead and have a long-term implant placed – or not.

    Yes, having a long-term implant does mean living with a small battery somewhere in your body, just like a pacemaker. But they’re so small now, and doctors are so good at implanting them that most people don’t even notice them. And if you do, you can have the whole thing removed. The whole procedure is reversible from start to finish.

    So, just as I mentioned with microdiscectomy and concentrated bone marrow injection, spinal cord stimulating implants keep your other options open. If it doesn’t work, it still doesn’t rule out most other procedures.

    For more info, WebMD has a pretty solid overview of the therapy, and this video shows you exactly where the implants go and how they work.

    Back Pain Is Terrible

    and so are super long blog posts, but look at me still writing!

    We just covered a lot of information, so I want to do a quick, brief recap. This way every reader will wonder why they didn’t just read this section first.

    1. Your spine does really important things, and it causes pain, disability, and/or paralysis when injured.
    2. Spinal fusion surgery can address big mechanical problems and relieve pressure on nerves, but it’s not exactly reversible and does shut down a lot of future treatment options.
    3. Microdiscectomy surgery removes chunks of cartilage that escape from your intervertebral disc(s) and crowd your nerves, and it keeps your future treatment options open.
    4. Intervertebral disc injection with your own concentrated bone marrow addresses discogenic pain without mechanical complications and keeps future treatment options wide open.
    5. Spinal cord stimulation implants can shut down pain signals from a wide variety of pain conditions, can be tried on like shoes or careers, and keeps future treatment options open.

    Phew, ok. I need to call it quits now. Plus it’s election day, and I have to go make sure everyone I know has voted.

    Side note: I didn’t include marijuana or opioids in this post because it’s already way too long, and they could each be their own blog category. So you’ll have to keep reading if you want to find out my opinions on cannabis (it works for some stuff) and vicodin (it’s super addictive).

    So yes, mesenchymal stem cells from your own concentrated bone marrow can help certain kinds of back pain, but we also have several other effective, patient-friendly options that don’t necessarily involve surgery.

    Alright, that’s it. Now, y’all go vote!

    Photo by Jesper Aggergaard on Unsplash

  • How Are Stem Cells Used Now?

    Y’all. If I get one more question about commercials for stem cells fixing intimate issues or stopping the aging process… I will complain aggressively to all my friends. Again.

    It seems like we, humans, have a super obnoxious habit of discovering something awesome and then over-selling it. Did those Ron-Popeil dehydrators ever really make anyone healthier or more energetic? Sure, fruit leather is tasty, but it’s not really altering the status of my tax return or removing all the pro-diabetes DNA from my genome.

    I find it easy to forgive the people at RonCo, because they just sold dehydrators for five easy payments of $9.99. I find my forgiveness skills far more challenged when people start selling stem cells for real problems that they absolutely do not address at this point in time.

    Stem cells do not at this time treat autism. Or cerebral palsy. Or irritable bowel syndrome.

    True story: when I was a wee small child in med devices, I volunteered at a stem cell charity event. And this guy told me that he had gotten shark stem cells in Mexico that cured his IBS.

    I am happy for this man, because IBS makes people miserable. But also, shark stem cells did not cure his IBS.

    Stem cells do address a number of issues though. So let’s dig in and see where physicians use stem cells right this moment.

    Spoiler alert: concentrated bone marrow (containing mesenchymal stem cells) is the most common form of clinical stem cells right this moment.

    Stem Cells From Concentrated Bone Marrow Help Grow Bone

    You’re probably thinking people don’t generally have trouble growing bone. Usually they just fall horrifically from one of those obnoxiously placed rent-a-scooters, snap their radius (forearm bone), pay way too much money for urgent care, get a puke green cast, and then magically have intact bone a couple months later.

    But things don’t always work out that way. Sometimes our bodies get tired of all the abuse and stubbornly refuse to grow back that broken bone.

    Non-Union Fractures: When Bones Just Can’t

    When this happens, the medical community calls it a non-union fracture. It means your body got stalled halfway to fixing that bone, and instead of bone, you get a type of cartilage.

    In the United States, this problem often receives an invasive surgical remedy, but the lovely French doctor I’ve mentioned in a couple of other posts has a simpler solution. For appropriate patients. He uses concentrated bone marrow (containing mesenchymal stem cells) to treat non-unions in average patients, diabetic patients, and even patients whose non-unions are infected.

    Without additional surgery or plates and screws. Just an injection of concentrated bone marrow.

    And it’s not just him. Many US surgeons now offer this option instead of surgery, because it carries less risk and requires less downtime for the patient.

    I have to point out that this isn’t new-fangled technology. The first publication I linked is literally 13 years old. Dubbya lived in the White House back then. So… mesenchymal stem cells have been helping heal broken bones since all of us were living in a very different world.

    Spinal Fusion: Don’t Let Your Hip Pay The Price

    During spinal fusion, a surgeon attempts to replace what they consider malfunctioning soft tissue in the spine with new bone. In ye olden days of spinal surgery, they used to harvest a big chunk (yes, that’s the technical term) of bone from the hip and put it in the spine. For a certain number of patients, this chunk o’ hip would leave them with long term pain.

    How might we fix this?

    Well, we could use concentrated bone marrow again. And it turns out that spine surgeons all over the world do this all the time now, and it works great.

    Plus, patients experience fewer complications and less pain with bone marrow aspiration than with chipping off a chunk of the old hip bone.

    Stem Cells From Concentrated Bone Marrow Help With Knee Stuff

    Sadly, there are a million reasons you might have knee pain. Maybe you played tennis too much in high school. You might have raced your college roommate up the stairs too many times. Or maybe you’ve just been living that rockstar lifestyle too long, and now you’re paying the price.

    Whatever the reason, and however metal it may be, most of us end up with knee pain at some point. So it qualified as good news for me when I finally saw publications coming out about mesenchymal stem cells being used for knee pain. As of right now, here’s where we see them clinically:

    1. Knee Arthritis
      In this study, patients reported improved function and reduced pain after injection of concentrated bone marrow.
      In this 125 patient study, patients experienced an average 71.4% decrease in pain. <– This one also used PRP.
    2. Osteochondral Defects
      *Osteochondral defects happen when joint injury goes all way from the top cartilage surface down to the bone. So both the cartilage and the bone need repairing.
      This study, this one, this one, this one, and this one all used concentrated bone marrow to successfully treat osteochondral defects. I actually don’t have room or time to list all the studies like these. But I do have to say that most of them show superiority of the bone marrow (mesenchymal stem cell) based treatment versus the alternative.
    3. As An Alternative to Total Knee Replacement
      In this landmark study, 30 patients who could have had double knee replacement surgery instead got one knee replacement and one bone marrow concentrate treatment with mesenchymal stem cells. Pain relief was roughly equal for the knee replacement vs. the bone marrow concentrate knee. And more importantly, 21 of the 30 patients preferred the bone marrow concentrate knee to the knee replacement. Probably on account of the easier recovery and fewer side effects.

    Stem Cells From Concentrated Bone Marrow Help With Hip Osteonecrosis

    Y’all, the privilege of advancing age brings a lot of awesome things. Holographic assistants, Snap Chat filters, and that peanut butter with the jelly already swirled in it, just for starters. But other stuff comes too. The undeniable urge to tell kids to get off your lawn suddenly overwhelms you. Yes, even when you don’t have a lawn. You start saying things like “my dress yoga pants” and “oooh, 9:30 on a weeknight is pretty late.”

    And sometimes your body betrays you and forgets to supply blood to things you feel are fairly vital.

    No, not that thing. You’re looking for a different website altogether if you want to discuss that thing.

    Over here at ISY, I’m talking about your hip joint, specifically the moving part of it.

    When your body fails to bring sufficient blood supply to that bone, it can deteriorate, causing pain and dysfunction. This condition is called osteonecrosis of the femoral head, and it sucks. And is one of the leading causes of hip replacement.

    But not to worry, concentrated bone marrow has treated this condition for more than thirty years now. Just check out this ridiculous list of studies:

    Stem Cells from Concentrated Bone Marrow Help Shoulders

    Rotator cuff repair surgery has a shockingly high failure rate. Of course the failure rate depends on a number of factors. Regardless, 20-50% failure rates would upset even the most unflappable patients.

    Don’t worry though. As with every section in this post, stem cells come to the rescue.

    In this study, bone marrow treated rotator cuff repairs healed faster and were almost twice as likely to remain intact after ten years.

    In this other study, they found concentrated bone marrow effective in reducing pain and improving function in rotator cuff tears.

    Stem Cells from Concentrated Bone Marrow Help Cartilage

    I’ve actually already covered this in the knee section with osteochondral defects, but let’s revisit. Because osteochondral defects, though doctors never call them that to your face, happen more often than you’d think. Mostly in knees and ankles though.

    Osteochondral Defects Happen

    This may seem irrelevant, but just go with me for a second:
    When I was doing gymnastics in the wilds of central Texas, we used to do this super dumb thing called mat crew. See, my high school couldn’t afford a real foam pit for training. So instead, we would make four gymnasts literally hold a big crash mat in the air and try to “soften” the landing for another gymnast throwing a big trick.

    No, it was totally safe, y’all. And also how I dislocated my ankle and become the proud owner of my very own osteochondral defect. I wasn’t sure if I should be proud of losing 40% of the cartilage in my ankle or terrified of it. It sounded kind of epic, but then…

    My pediatric orthopedic surgeon told me, in words I’ll never forget, that I should probably quit gymnastics. And that I was definitely not doing any other sports or running ever.

    You do not run. You do not jump. You do nothing that involves impact on this ankle. You can finish your last two years of gymnastics, but after that it’s over. Unless you want to have arthritis so bad that you feel crippled by the age of 30.

    That’s what he said to me. At 16 years old. And he was right, but he didn’t have concentrated bone marrow back then. And it would have made a world of difference.

    Concentrated Bone Marrow Is Awesome for Cartilage

    Since I’ve already written way too much here, I’m just going to leave you with this list of publications making my point for me. Every one of these publications says I could have run, jumped, and generally abused my ankle for years after that fateful mat crew incident. If only my surgeon had been able to use concentrated bone marrow.

    1. 2010 Study | Knee Cartilage
    2. 2011 Study  | Knee Cartilage
    3. 2011 Study | Knee Cartilage
    4. 2013 Study | Knee Cartilage
    5. 2014 Study | Knee Cartilage
    6. 2015 Study | Knee Cartilage
    7. 2016 Study | Knee Cartilage
    8. 2016 Study | Knee Cartilage
    9. 2017 Study | Knee Cartilage
    10.  2009 Study | Ankle Cartilage
    11.  2010 Study | Ankle Cartilage
    12. 2011 Study | Ankle Cartilage
    13. 2011 Study | Ankle Cartilage
    14. 2013 Study | Ankle Cartilage
    15. 2014 Study | Ankle Cartilage
    16. 2016 Study | Ankle Cartilage

    That was a lot of studies, y’all. But I have one more thing to share, one more clinical use of stem cells that happens pretty much daily in this country.

    Stem Cells from Concentrated Bone Marrow Help Back Pain*

    *A very specific type of back pain called discogenic back pain.

    Please note: that doesn’t mean all kinds of back pain. There are some kinds of back pain, like those resulting from CRPS or other types of nerve injury that probably won’t respond to any currently available stem cell treatment.

    Stem cells aren’t magic, y’all.

    But they have treated discogenic back pain. This study showed a 70% average pain reduction at 3 year follow-up after discs were treated with concentrated bone marrow. And the patients in that study were all spinal fusion candidates. So with 70% pain relief, most of them chose not to go on to surgery. That’s huge in my book.

    This last application has the fewest publications, but we’ll see a lot more in the next couple of years. Because physicians are offering this therapy a lot more than they’re publishing it. I still wouldn’t say this qualifies as a super common use right now, but it is definitely clinically available.

    Well That Took Forever

    When I started this post, I told myself it would be a short one. :: haha ::

    Let’s focus on the positives though. Now you know how stem cells are used clinically today. In orthopedics.

    That’s an important caveat. I skipped over stem cells in cancer and immunotherapy. I’ll have to cover those in another post, because this one is already out of control.

    Do you know someone who received a stem cell treatment not listed here? Have questions about any of the million things I said?

    Get your two cents into the comments, or leave some feedback directly in my inbox!

    Photo by rawpixel on Unsplash